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Abstract

Serpentine belt drive systems are widely used in automobiles due to their compactness

and long life. These systems are composed of a belt, a driving pulley, driven pulleys, and

a spring-loaded tensioner. The driven pulleys may include such accessories as the

alternator, air conditioner, or power steering pump. Serpentine belt drives experience

many different types of steady state motions and transient vibrations due to the different

parameters in the system. As a result of this, it is important to create a mathematical

model that allows the designer to extract information about the system such as the natural

frequency and the mode shapes. The accuracy of the model will depend primarily on the

assumptions used. In particular, a key assumption is whether transverse and rotational

motions of the belt are coupled due to the motion of the automatic belt tensioner. This

coupling is often neglected by authors who model only longitudinal belt response and in

effect decouple the transverse and rotational motions. Using a solution based upon

coupled motion as well as a solution employing rotational motion only, the importance of

this coupling will be assessed. Both solution results will be compared against published

experimental data. In addition, a parametric study will be performed to determine the

ability of the coupled and decoupled models to accurately predict changes in system

natural frequencies and mode shapes due to changes in system parameters.
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CHAPTER 1

INTRODUCTION

A belt drive is used to transfer power from a driving pulley, powered by some external

source such as an electric motor or internal combustion engine, to one or more driven

pulleys. Belt drives are employed extensively by machine designers in such applications

as power tools, vacuum cleaners, automobiles, or any other piece ofpowered rotating

equipment. This chapter gives an introduction to the application ofbelt drives within an

automotive front end accessory drive utilizing a V-ribbed belt to transfer power between

the engine crankshaft and multiple accessory pulleys. Recent work that has been done to

model belt drives and analyze these models will be reviewed in section 1 .2. Goals and

contributions of this thesis will be presented and described in section 1.3.

1 . 1 SERPENTINE BELT DRIVES

In recent times, front end accessory drive designers have evolved from utilizing a

multiple V-belt setup to employing a single V-ribbed belt (poly-grooved belt). Such a

system, shown in Figure 1 . 1
,
is known as serpentine belt drive due to the elaborate path it

must follow to reach all of the accessory pulleys and provide a sufficient wrap angle.

The advantages ofusing a serpentine belt drive setup over multiple V-belts include

compactness, ease ofbelt replacement, length ofbelt life, and the ability to maintain

strand tension using a single tensioner mechanism.

Serpentine belt drives consist of a driving pulley, driven pulleys, belt, and an automatic

tensioner. The driving pulley is attached to the engine crankshaft which provides the

torque necessary to drive the system. Typically, in front end accessory drive

applications, the number ofdriven pulleys ranges from 2 to 6 and may power such

components as the air conditioner compressor, water pump, alternator, and power

steering pump. An idler pulley is often used simply as a
"dummy"

pulley to increase the

wrap angle around
adjacent pulleys experiencing high torque demands.



Figure 1.1 Serpentine belt drive system



Belts used within a serpentine drive are referred to as multi-rib belts, V-ribbed belt, or

poly-grooved belt. They will be referred to as V-ribbed belts throughout the rest of this

thesis. V-ribbed belts experience longer life compared to thicker cross section V-belts as

a result of their smaller bending stiffness and reduced structural damping. Low bending

stiffness and increased width allow these belts to transmit power using the back side, or

flat side, of the belt. V-belts are unable to accommodate this task due to the fact that their

increased thickness is not suitable for bending in both directions.

An automatic tensioner acts to maintain constant tractive tension throughout the entire

belt drive system despite belt wear, assembly variation, and deviation in belt length due

to changes in accessory torques, belt speed, and belt temperature. There exist two types

of tensioner setups: pivot and slider. The pivot tensioner is composed of an idler pulley

pinned to a rigid moment arm which pivots about a fixed point. At the pivot point, a coil

spring and dry friction or viscous damper are attached to the rigid arm. The second

arrangement for the tensioner is the slider type tensioner. This setup has the idler pulley

slide within a straight groove. A linear spring and a dry friction or viscous damper are

attached to the idler pulley. The effectiveness of the tensioner is dependent upon the

design and integration into the belt drive system. Ideally, the tensioner should maintain

constant tension in the two belt spans adjacent to it.

The core source ofbelt malfunction is vibrations within the system. There exist two

different types ofvibrations that a belt may experience. The first type is referred to as

rotational vibration (some authors may refer to this as torsional vibration, but this is an

incorrect label as torsional motion is taken to be belt twist about an axis pointing in the

direction ofbelt travel). Rotational vibration occurs when the pulleys oscillate about

their spin axes and in turn induce longitudinal belt deformations. In this case, the belt

acts as an axial spring between the pulleys. The second type ofvibration is referred to as

transverse vibration which is the motion of the belt normal to belt travel. This is

generated by the motion of the tensioner or the rotational vibration of the system.



Belt vibrations can be the result ofvariation in the applied torque at the crankshaft due to

the ignition cycle of the engine, torque from the pulleys, pulley eccentricities, irregular

belt properties, or motion of the pulley supports. Dynamic stresses in the belt as a result

ofvibrations are detrimental to the effective operation of the belt drive as they may cause

premature wear and may lead to loss of sufficient tension. Rotational vibrations also

create dynamic stresses in the bearings which lead to bearing fatigue and noise. Belt slip

around the pulley takes place when the tension drop across a pulley exceeds the friction

force between the pulley and the belt. As the belt creeps against the pulley during tension

transitions, the belt will experience early wear.

1 .2 LITERATURE REVIEW

The basis for the work that has been done in the field of serpentine belt drives is research

on the vibration characteristics of axially moving material. Mote [1] formulated a

procedure to determine band saw natural frequencies. He found that the natural

frequencies decrease from a maximum at zero velocity at a rate which depends upon the

band pulley axis relative motion. If the axes are fixed, the natural frequency decreases

most rapidly with increasing velocity. However if the axis are allowed to move relative

to each other thereby allowing the band to extend, the natural frequency decreases less

rapidly with increasing velocity. In a later work, Mote and Wickert [2] presented an

additional method ofmodeling axially moving continua in which the orthogonality

properties of the gyroscopic system are used to simplify the formulation of the complex

eigenfunctions.

Modeling and analyzing serpentine belt drive systems with a dynamic tensioner was first

accomplished by Ulsoy et al. [3] in which they used a mathematical model to examine the

transverse vibration and stability of coupled belt-tensioner systems. Experimental results

were used to locate instability regions and to validate the numerical solutions of the

mathematical models.



Gasper and Hawker [4] developed a system of governing equations for a serpentine belt

drive system that include damping, accessory load variations, and fluctuations in input

torque. Despite the absence of a dynamic tensioner, they introduced a solution technique

that resulted in the eigenvalues and eigenvectors of the complete system, which was

proven useful in future works.

Hawker [5] developed a mathematical model for the angular motion of an automotive

accessory drive system including an automatic tensioner. He developed the model with

the objective of determining the natural frequencies and mode shapes by using the

approach of assuming harmonic motion and solving for the eigenvalues and eigenvectors.

The forced responses and dynamic belt tension are found using superposition once the

equations are put in linear form. Experimentation was used to validate the numerical

results.

Barker et al. [6] developed a model for a complete serpentine belt drive system including

a tensioner and multiple pulleys. The objectives of the model were to simulate the

response of each pulley and belt span to known input motion of the crankshaft. In

addition, simulations ofvarious combinations of accessories being turned on or off are

compared against experimental results. Experimental testing was used to define

characteristics of the components which are then modeled using polynomial curve fitting

and numerical solution ofdifferential equations.

Hwang et al. [7] derived a nonlinear model that governs the longitudinal response of the

belt spans in correlation with the rotational response of the crankshaft and accessory

pulleys. Solution of the equilibrium equations leads to the tension-speed relationship for

the serpentine belt drive system. The overall equations ofmotion are then linearized

about the equilibrium state allowing the rotational mode characteristics to be obtained

from the associated eigenvalue problem. Through integration of the nonlinear equations

ofmotion, belt tension fluctuations are obtained that are used to predict the onset ofbelt

slip around each accessory
pulley.



Kraver et al. [8] extended the modal vibration analysis to include a viscous belt span and

coulomb tensioner arm damping. It is claimed that the complex modal procedure

provides a solution over a range of driver pulley frequencies at a speed of over 1 00 times

faster than the
4*

order Runge-Kutta numerical integration method. In order to validate

the model, results were compared against Hwang et al. [7] and found be in good

agreement.

Using dry friction damping within their model, as opposed to the more commonly used

viscous damping, Leamy and Perkins [9] were able to capture the primary and secondary

resonances within the belt drive system. This was accomplished using an incremental

harmonic balance method generalized for use with multi-degree of freedom linear

subsystem coupled to a single degree of freedom nonlinear subsystem with Coulomb

damping.

Balaji andMockensturm [10] used a one-way clutch to mitigate tension fluctuations in

the belt caused by the high inertia accessory pulleys. The system is modeled considering

only longitudinal vibration of the belt spans and incorporates a decoupler and/or isolator

within the high inertia accessory pulley. This model is linearized about the equilibrium

configuration in both engaged and disengaged states to obtain analytical solutions.

Numerical integration of the equation ofmotion is used to determine the effect ofnon

linear terms.

Previous works on serpentine belt drives have used linear strain measure to predict

transient belt tensions. Schulz [11] instead used logarithmic strain measure to describe

elastic creep. It was shown using numerical examples that the logarithmic strain measure

provides more accurate results than the linear strain measure due to the condition for the

existence of steady state motions with constant belt tensions, as a solution of the mass

conservation law.

Nouri and Zu [12] described an approach for optimizing the design of the automatic

tensioner within the belt drive system. Using sequential quadratic programming for the



multi-degree of freedom system and the Kuhn-Tucker method for the single-degree of

freedom system, the authors were able to obtain the optimal design. The optimal design

minimizes tension variation in the belt spans and pulley responses due to the harmonic

excitation from the crankshaft.

All of the works mentioned previously assume that the linear response ofbelt drives is

composed of the superposition of independent transverse and longitudinal modes.

However, as shown by Beikmann [13], there exists a linear coupling between the

transverse and rotational modes in the spans adjacent to the automatic tensioner. This

linear coupling is created by the rotational degree of freedom of the tensioner arm. In

addition, there exists a nonlinear coupling mechanism between rotational and transverse

modes arising from the finite stretching of the belt. This coupling can become greatly

magnified under conditions leading to internal or autoparametric resonance. Beikmann

also introduced a tensioner support constant r\ which is an indicator of 1) the systems

ability to maintain tractive tension (despite load and speed variations), and 2) stability of

the reference equilibrium state.

Beikmann et al. [14] examined further the linear free response of serpentine belt drives

involving coupling between the transverse and rotational modes. They provide an exact

solution procedure to calculate the natural frequencies and mode shapes of a prototypical

three pulley system which may be extended to any system with n number pulleys. In [15]

Beikmann et al. examined the nonlinear coupling in the serpentine belt drive system. To

obtain a low-order discrete model for nonlinear forced response a modal expansion is

used which captures the two-way coupling between all mode-pairs. It is found that in the

presence of 1 :2 internal resonance, rotationally dominant modes generate dynamic

tension fluctuation which may excite large transverse belt vibrations. This is due to the

strong nonlinear mechanism
that couples the rotational dominant (longitudinal belt)

modes and transversely dominant modes. Beikmann et al. [16] continued work on

serpentine belt drive systems by examining the effectiveness of the automatic tensioner.

Using a closed form solution to the nonlinear equation, the key parameters are



determined which affect the tensioner performance as characterized by the tensioner

constant q.

Zhang and Zu [17] used the prototypical three pulley model developed by Beikmann to

formulate an explicit characteristic equation for the natural frequencies which allows the

belt drive designer to examine how system characteristics affect the system eigenvalues.

The exact closed-form solution to the dynamic response due to arbitrary excitations and

initial conditions is given using eigenfunction expansion. Zhang and Zu continued the

analysis of serpentine belt drives in [18] using the method ofmultiple scales to examine

the continuous governing partial differential equations.

Belt bending stiffness, which is assumed to be negligible in the previous works, was

studied extensively byWasfy and Leamy [19]. A finite element technique is extended to

include the effect ofbelt bending stiffness and is used to examine its effect on normal and

tangential contact forces on the pulleys, belt wrap angle, belt creep around the pulleys,

belt-span tensions, and transverse vibrations. Whereas Wasfy and
Leamy'

s model did

not include a tensioner, Kong and Parker [20] studied the effects ofbelt bending stiffness

on natural frequencies and vibration modes in a typical serpentine belt drive system

including an automatic tensioner. To incorporate bending stiffness into the model, the

belt is modeled as a moving beam as opposed to the moving string model used in

previous works. A spatial discretization to solve the eigenvalue problem is developed

and the relationship between belt-pulley coupling and bending stiffness is studied. Kong

and Parker [21] continued the study ofbelt bending stiffness by examining their effect on

transverse vibrations in belt spans between fixed pulleys. The span equilibrium

deflections are determined from a set of nonlinear equations that are solved using

ordinary differential equation conversion techniques to reformulate the governing

equations into standard boundary value problems to be solved using general purpose BVP

code. The results are used to examine the effects ofmajor design variables on

equilibrium deflections and coupling indicators.



Parker [22] formulated an efficientmethod for calculating the eigensolutions and

dynamic responses of coupled serpentine belt drive systems. The speed of solution is

drastically reduced and the numerical problems that hinder other published methods are

eliminated by the use of Lagrange multipliers to enforce geometric boundary conditions

at the belt-tensioner interface. However, by coupling the rotational and transverse

motions in the spans adjacent to the tensioner, the system of equations becomes

significantly more complex thanmodeling the motions as uncoupled. As a result, the

solution techniques required to solve these models demand considerablymore

computational power. It is therefore important to know what effect coupling has on the

responses of the system in order to know the accuracy to which the solutions are limited

by using such an assumption.

1.3 THESIS OBJECTIVE

Previous studies in the area of serpentine belt drives have aimed to find more accurate

and more efficient ways ofmodeling the systems. For this reason, it has become

common practice for authors to couple the transverse and rotational motions of the belt.

However, as a consequence, the models become more complicated and in turn require

additional effort to solve. The advantage of coupling the motions has been assumed to be

necessary in past works; however the authors have neglected to prove whether it is

beneficial to do so. It will be analyzed here whether coupling the motions is indeed

necessary.

This thesis aims to quantify the coupling/decoupling effect by 1) modeling serpentine belt

drive systems using only rotational motion, 2) modeling these systems by coupling

transverse and rotational motion as a result of the action of the tensioner.

Rotational motion permits only longitudinal deflection of the belt. Using rotational

motion as the only source ofbelt displacement effectively decouples the transverse

motion from the tensioner arm rotation. With this assumption, the natural frequencies

and mode shapes may be found through the nonlinear equations ofmotion of the system



by linearizing the equations about the steady operating state. Transverse vibration

characteristics may be found by applying additional techniques that are decoupled from

the rotational characteristics of the system.

Coupling the transverse and rotational motions of the belt spans allows natural

frequencies and mode shapes to be revealed that otherwise would be lost by assuming

only longitudinal deflection of the belt. The solution corresponding to the coupled

equations ofmotion requires the use ofLagrange multipliers imposing geometric

boundary conditions on the belt spans adjacent to the tensioner.

The techniques for modeling and solving the serpentine belt drive systems will be taken

from published works. The uncoupled analysis will be borrowed from Hwang et al. [7],

and the coupled analysis will be borrowed from Parker [22]. These works were chosen

based on the fact that they utilize roughly the same modeling assumptions and

dimensional specifications. In addition, both techniques are used to solve a large system

of seven pulleys, yet they can each be easily adjusted for an arbitrary number of pulleys.

Finally, both works include a case study where the system information is provided along

with a presentation of the results. This is beneficial, as the results presented here can be

compared to those given by the authors of the original work.

The original contribution of this thesis is the comparison of the two methods through the

analysis of their results based on the different system configurations. In addition,

experimental results from another work will be used to confirm the accuracy ofboth

techniques.

The impact of coupling on the natural frequency and mode shapes of the system will be

analyzed in a parametric engine speed study.
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CHAPTER 2

DECOUPLED FORMULATION

This chapter presents the equations ofmotion of a serpentine belt drive system where

transverse motion of the belt is decoupled from the rotational motion. A prototypical

model of a serpentine belt drive for rotational motion is first presented and used to

formulate the nonlinear equations ofmotion. An equilibrium analysis is performed to

determine steady state characteristics of the system. The equations are then linearized

about the steady-state operating point in order to calculate the rotational natural

frequencies and mode shapes. A separate model for the transverse motion of the belt

tensioner spans is then developed.

2.1 ROTATIONAL MOTION MODEL

The followingmodel and theoretical formulation for the decoupled rotational motion of

the serpentine belt drive system is taken directly from Hwang et al. [7] with additional

elaboration of computations for completeness.

2.1.1 Problem Formulation

A schematic of the serpentine belt drive setup is shown in Fig. 2.1. This configuration

will be used to derive the equations ofmotion that describe the rotational response of all

pulleys due to belt stretching and change in belt tensions. The methodology used herein

can be applied to any system of n pulleys. The assumptions used in developing the

governing equations are
based on the work ofHwang et al. [7], and they include:

1 . The belt does not slip on the pulleys.

2. The belt is uniform, perfectly flexible, and stretches in a quasi-static manner.

3. Transverse belt response decouples from longitudinal belt response.

4. The crankshaft motion and any torque inputs from accessories are prescribed

(either zero or determined from experiments).

11



5. The tensioner executes small motions about some steady state position. Moreover

the tensioner mechanism is designed to be dissipative and is the dominant source

ofdissipation. This dissipation is assumed to be linear viscous damping, and

dissipation in the belt and fixed pulleys is assumed to be negligible small.

Assumption (3) in effect completely removes any consideration of transverse motion of

the belt.

Viewed from the front of the engine as shown in Fig. 2.1, 0 . is the absolute rotation of

they"

pulley taken positive for the rotation caused by the assumed clockwise motion of

the belt. It follows that 0 . is positive in the clockwise direction if
they*

pulley is on the

interior of the belt loop and positive counter-clockwise if on the exterior of the belt loop.

The absolute rotation of
they1

pulley is defined as

J=aJt + ej (2.1)

where, t is time and 9} is the phase angle. The phase angle term represents deviation,

under a specified operating speed and accessory loading, from the static equilibrium

position of
they*

pulley observed at a frequency corresponding to a>j . The angular

velocity of
they*

pulley is determined by

,=f
<?*>

rh

where R is the radius of they pulley, and V is the steady belt transport speed. V is

constant and dependent upon the imposed steady state operating speed (RPM) of the

crankshaft according to the
relationship:

2n
V = R,*RPM (2.3)1

60
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Figure 2.1 Prototypical serpentine belt drive system
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Taking the first and second derivatives with respect to time of equation (2.1) yields the

angular velocity and angular acceleration respectively

J=a>J+0J (24)

y = ^ (2-5)

where, 0} and f?y are the velocity and acceleration of the phase angle respectively.

The tensioner arm angle (6>, ) is used to define the location of the tensioner pulley. It is

measured between the horizontal and the tensioner arm, taken positive counter-clockwise,

as shown in Fig. 2.2. The quantities Qj and Jf represent the applied external torques

and the moment of inertias for each pulley respectively. Due to how Q is defined in

Fig. 2.1, it must be assigned a negative value to produce a torque resisting the motion of

the pulley.

The linear spring constant of each free belt span and arc of contact are represented by K .

and K
j
respectively. Based on the assumption that the belt is uniform and stretches in a

quasi-static manner, they are calculated by dividing the longitudinal stiffness of the belt

(EA ) by the length of each portion. The length of the free belt span is described by L .

,

and the arc of contact is described by Rj^j ; where (j>} is the wrap angle of the belt around

they*

pulley. Length ( L} ) and angle (^ ) are calculated from the geometries of the

system.

The equation ofmotion for each fixed center pulley is given by

@jJi=QJ+RJ(PH -Pj),j=2,3,...,6 (2.6)
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Crankshaft

(Driving Pulley)

Figure 2.2 Tensioner assembly
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where, P} is the total tension
iny*

span. Substitution of equation (2.5) into the above

equation yields

0jJi=Qj+RJ(PM -Pj),j=2,3,...,6 (2.7)

which represents the equation ofmotion in terms of the phase angle instead of the

absolute angle of rotation. The equation will be utilized in this form throughout the rest

of the analysis.

The tensioner subsystem consists ofpulley 7 at the end the tensioner arm which rotates

about the fixed pivot point at the hub. The motion of the tensioner arm is resisted by the

hub mounted rotational spring and a viscous damping element at the pivot point. The

equations ofmotion of this system (derived in Appendix A) are given by

(07+0l)J7=Q7+R7(P6-P7) (2.8)

0,(J, + J7l) + 07J7 + C,0, -K,(0O -0,)
=

R7 (P6 -P1) + Ll sin(A )[P6 -p(V + R707)2] (2.9)

-Llsm(B2)[P7-p(V + R707)2]-meffLeJfgcos(0l) + Ql

where J, is the moment of inertia of the tensioner arm about the pivot, J7l is the moment

of inertia of the tensioner pulley about the tensioner arm pivot, C, is damping of the

tensioner arm about the pivot, Kt is tensioner arm stiffness, 0O is the position of the

tensioner arm with the belt installed at zero speed and zero accessory torques, Lt is the

length of the tensioner arm, /?, 2 are the orientation angles of the spans adjacent to the

tensioner as defined in Fig. 2.3, p is the belt mass per unit length, meff is the total mass

of the tensioner assembly, LefS is the distance between the pivot and mass center of the

16



Figure 2.3 Tensioner assembly angles
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tensioner assembly, g is the gravitational acceleration, and Qt is the preload torque on

the tensioner spring. The orientation angles (3X2 are calculated in Appendix B along with

the span lengths of the belt sections adjacent to the tensioner. The angle 07 is measured

relative to a rotating reference frame attached to the tensioner arm at the pivot. The term

p(V + R707) represents the centrifugal belt tension. This term provides the centripetal

acceleration of the belt as it accelerates around the pulley perimeter and it can be shown

to be uniform throughout the system (Beikmann et al. [16]).

In the previous set of equations ofmotion, there are more unknowns than there are

equations to solve them. As a result, additional equations relating the span tensions to the

pulley angular positions must be derived. To do this, a linear constitutive law is adopted

which describes the belt tension as a function ofbelt elongation

PJ=P0+KJAJ (2.10)

where P0 is a reference static belt tension calculated at zero belt speed and zero accessory

torques and A7 is the elongation in the longitudinal direction of
they*

span. The

elongation is related to the pulley rotations through the relationship

AJ=Rjj-RJ+xJ+l-5J,l (2.11)

where, 8 is the stretch of the belt over the contact arc of
they*

pulley. Substitution of

equation (2.1) into the above equation casts the elongation ( Ay ) as a function of the

phase angle (6f) as follows:

AJ=RJ0j-RJ+l0J+]-8j+l (2.12)
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The stretch ( 8j ) is difficult to calculate due to the complicated dynamics ofbelt creep

over the pulley. However, it can be estimated using the average of the adjacent tensions

as follows [7] :

K**j
+ (P.-PQ)

(2.13)

The reference static tension P0 must be subtracted from the total tension ( P} ) for the

reason that 8\ is defined as the additional stretch due to motion of the belt. Substitution

of equation (2.12) and (2.13) into equation (2.10) and rearranging terms yields

2**+>
+ P

7+ 1

K.

2K
pj+i

1 + -

J

K
pj+i

,y=i,2,...,5 (2.14)

+ KJ[RJ0j-RJ+l0J+l]

To account for the change in belt length due to rotation of the tensioner subsystem, spans

6 and 7 must use the following equations which include additional terms beyond those in

equation (2.14):

1 +
K<

2K
pi

+ P-,
K<

2K
pi

1+*

K
pi

+ K6[R606-R707]

+K6[(L6-L6o) + (R6+R7)(Cl-Clo)]

1 +
2K

pi

+ P
Kn

2K
pi

= Pn 1 +
K,

K
pi

+ K7[R707-Rl0l]

+K7[(L7-L7o)-(R7+Rl)(<;2-c;2o)]

(2-15)

(2.16)
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where the angles l2 are defined in Fig. 2.3 and calculated in Appendix B. <^lo , 2g ,

L6g ,
and 7_7o are the reference values of <^u

and L67 for vanishing belt speed and

accessory torques.

The seven unknown coordinates 0, , 0j (j=2,3,...,7), are governed by the seven nonlinear

equations obtained by substituting equations (2.14)-(2.16) into (2.7)-(2.9). The known

inputs to the system are the prescribed motion of the crankshaft ( 0X ) and the accessory

torques Q} (/=2,3,...,7).

2. 1 .2 Equilibrium Analysis

The equilibrium equations are formulated by eliminating the time derivative terms in

equations (2.7)-(2.9). The resulting set ofnonlinear equations is

QJ=Rj(Pi-PH),j=2,3,...,l (2.17)

-K,(0O -0,)
= R7(P6 -P7) + L,sm(/3l)[P6 -pV2]

-

L, sin(/J2 )[P7
-pV2]-

meffLeJfgcos(0, ) + Q,

Equations (2.17) and (2.18) together with the tension equations (2.14)-(2.16) provide

fourteen equations for evaluation of seven steady-state tensions P/ (/-1,2,...,7) and seven

pulley coordinates 0, and 0. (f=2,3,...,7). The fourteen equations can be reduced to a

single equation of the unknown 0, as follows.

First, the reference tensionmust be calculated by setting V =0 and realizing that

P6
=

P7
=

po with vanishing speed and zero accessory torques. As a result, P0 can be

calculated as follows:
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p

Z,(sin(A)-sin(A))
"''

Equations (2.14)-(2.17) now represent thirteen linear equations in the thirteen unknowns:

Pj 0=1>2,...,7) and 0j (j=2,3,...,7). Treating 0, as a parameter, the secant method is

used to solve for the steady-state tensions and phase angles. This is accomplished by

moving the
-

K, (0Q
-

0t ) term to the right side of equation (2.18) to form the following

general equation from which the equilibrium 0t will be calculated.

F(0,) = K,{0o -0l)+R1{P6 -P^+L.smMlp.-pV2]

-L.sinfaip, -pV2]-meffLeffgcos{0t)+ Q,

where, F(0t ) represents a function of 0, . Employing the secant method, an initial guess

of 0t is made for some steady operating speed. Using equations (2.14)-(2.17), the

corresponding tensions and phase angles are calculated. A second guess of 0, is made

and the same procedure is used to find the respective tensions and phase angles. The

function F(0t ) is evaluated for each guess of 0t and the secant method is used to find the

next value of 0, . This iterative process continues until the change in 0t approaches zero.

The resulting 0, is the equilibrium position of the tensioner arm at some steady operating

speed and accessory torque loading. The subsequent equilibrium span tensions and phase

angle position are found by back substitution into equations (2.14)-(2.17).

2. 1 .3 Vibration Analysis

The rotational vibration of the system is investigated by linearizing the equations of

motion (2.7)-(2.9) and (2.14)-(2.16) about the equilibrium state defined by (2.17) and

(2.18). Results of the analysis are used to determine the natural frequencies and mode

shapes. The linearized set of equations ofmotion are written as
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Mf + [CJ? +M = 0 (2-2D

where, =[ 0t , 02 ,. . .

, <97 ]T, [m] is the mass matrix, [c] is the damping matrix, and [k]

is the stiffness matrix. To determine the elements of the mass, damping and stiffness

matrices, the tension must be linearized into equations (2.7)-(2.9), then substituted into

equations (2.14)-(2.16). The procedure for linearizing the tension begins with defining

small perturbations of the phase angles and phase angle velocities about the equilibrium

values:

0X =0{ + SX

02=02s+s2

07 = 9e7 + sn
. . (2.22)
0, =&?+,

0\ =
0\e

+ sx

0\ =0e2+s2

0-1 0j + sn

where the equilibrium values are denoted by the superscript
e

and e represents a small

perturbation from equilibrium. In equation (2.22), the
0e

terms are equal to zero as they

represent the phase angle velocity at equilibrium. Noting that the tensions are functions

of the 0 ,
as shown by equations (2.14)-(2.16), and since

0e

equals zero; equation (2.7)

becomes

-RJPj(9;+02s+2,...,O + 7)
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where Pj_x and Pj are functions of the variables in parenthesis. Employing a
multi-

variable Taylor series expansion of Pj_x and Pj about the equilibrium position, equation

(2.23) can be rewritten with tension terms linearized as

+ Rj(dPhX/d0t)\ee,

+ Rj(dPJ_x/d02)\es2

7=2,3,... ,6 (2.24)

+ RJ(dPj_xld01)\j1

-RjPj(o;,0;,...,q)

-RJ(dPjld0,)\es,

-Rj(dPlld02)\ee2

In the above equation, only the first order differential terms are utilized as higher order

terms are ignored given that the perturbations about equilibrium are small. Noting

Qj + RjPj_x (0et , 6{ ,
. . .

,0)

-

RJPj (0; , 0{ ,
. . .

,0)
= 0

, rearranging of terms yields:

JjSj + Rj [(dPj 1 80, )| e
-

(dPhX 1 39, )\ e ]s,

+ Rj[(dPJld02)\e-(dPj_xld02)\e]2

+ Rj[(dPjld01)\e-(dPj_xld01)\e)s1

+ RJ[(dPj/d0,)\e -(dPhXld9,)\e], /=2,3,.. .,6 (2.25)

+ R; [(8Pj
Id9\)\e-

(dPH 1 892 )| e ]s2

+ Rj[(dPJld91)\e-(dPhX/d91)\e}7

= 0
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The mass, damping and stiffness matrix terms are not yet complete as only five equations

have been used to describe seven coordinates. The final two equations to be linearized

are (2.8) and (2.9). Linearizing tension into equation (2.8) is completed in the same

manner as previously described; however the rotational inertia term must account for the

rotation ofboth the pulley and the tensioner subsystem. As a result, the ./.. term in

equation (2.25) becomes J77+J7, for the case ofy'=7. Linearization of equation (2.9)

is completed as follows:

J77 +(J7 +J7,)sl =-C,(0;+e,) +Kl0o-K,(0:+e,)

+R1P6(0;+,,9;+2,...,Q + e7)

-R7P7(0:+s02s+2,...,O +7)-R7P7(0:+S02S+2,...,O +7)

+ Llsm/3x{P6(0;+0<+2,...,O + s7)-p[V +R7(0;+7)]}

-L,smB2{P7(0: +0e2+2,...,O + 7)-p[V + R7(0e7 +,)]}

m T ct
nr\c()e

_i_ c \ -i_ D
meffLeffS^S(0^ +,) + Q,

(2.26)

Recognizing again that the sum of the equilibrium terms equals zero, and noting that

cos(<9,e

+,) can be transformed using trig identities and Taylor series expansion,

rearranging of the remaining terms of equation (2.26) provides the final form

J1s1+(J1+J1,)s,

+ {K, + R7[(dP7 /d0,)\e-(dP6/d0,)\j-L, sinAidPJde,)]. + L, sin p2{dP7 1d8,%
-

mtffLcffg sinO^e,

+
{RA(dP7/dd2)lAdP6/d02)\e]-

L, sinfi(dP6 Id62)\e + L, sin /32(8P7 / 8&2)\e}e2

+{R1[{dP1id01)l-{dPjde7)\e]~L,sinp,{dPjde1% + L,smp1(dP1ide1%}e1

+ {C, + R7[(dP7/d6>X-(dP6 lde,)\.\-L, sinft(dPJde,)l + L,
sin/J2(3/>

/50,)|.R

+ {R7[(dP7/d02)\e-(dP6/dd2)l]-L, sin ft(8P6 lde2)\e + L, sin /32(dP7 /d82)\e}e2

+ {RA(dP7/d07)\e-(8P6 /d07)\e]-L, sin fr{dPJ30,% + L, sin p2(dP7 Id67% + L, sin ftpR,
-

L, sinfrpR^s,

= 0

(2.27)
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The mass, damping and stiffness matrices can now be assembled from the equations

presented above; they are presented in Appendix C. The partial derivative terms in

equations (2.24)-(2.27) are determined numerically since the tensions cannot be explicitly

written in terms ofphase angles <9y . Calculation of the partial derivatives is

accomplished according to

{dp lm\x
\PA0U0l,..4,0U,0^e,0ix,...^7)-p](0U0i,0i,...,0;)\

(2 28)

/=1,2,3,...,7

z'=r,2,3,...,7

where is some small perturbation of they pulley from its equilibrium position.

With the mass, damping and stiffness matrices assembled, the eigenvalues and

eigenvectors can be determined. Assuming a solution for equation (2.21); of the form

Z(r) =
&2'

(2.29)

the resulting eigenvalue problem is the following

{(2xcon)2[M] + 2xcon[C] + [K}K = 0 (2.30)

The natural frequencies and mode shapes of the system are determined numerically from

the previous equation. The natural frequencies are given by the imaginary parts of the

eigenvalues due to the damping term, and the mode shapes are determined from the

eigenvectors %} ,y'=l,2,...,7.
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2.2 TRANSVERSE MOTION MODEL - TENSIONER SPANS

As a result of assumption (3), the previous formulation neglects transverse motion of all

belt spans. Assumption (3) is purely a simplification of the system and it permits

simplified computation of the rotational eigenvalues and eigenvectors. However, there

still exist transverse motions of the belt, particularly in those spans adjacent to the

tensioner.

Increased velocity of the belt will increase belt tension; however due to the fact that the

tensioner support is not rigid, the resulting belt stretch will allow the tensioner to relax.

The interaction between a non-rigid tensioner support and the adjacent spans is

considered byMote [1]. Results are presented by Abrate [23] in a form that is easily

adaptable to serpentine belt drive systems. The reference tensions within the span are

calculated as

P^P^rjpV2

(2.31)

where Pr is the reference tension of they span, and tj is a constant that depends upon

the relative stiffness of the support and belt. For spans adjacent to the non-rigid

tensioner, tj can be calculated according to Beikmann et al. [24] as

k"
(2.32)

kb +ks+k

where

T7 A

kb= (cosy/xJt4Cosy/2) (2.33)
^belt
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*.=4 (2.34)

K
=

Prj
dcos(y/x) dcos(y/2)

dx. dx
(2.35)

j

where, y/X2 are defined in Fig. 2.4, xs is the tensioner support motion, and Lbell is the

length of the entire belt. Since the terms

can be neglected.

dcos(y/X2)
:

are approximately zero, the k2 term
dx..

s

The transverse natural frequencies of the spans are now calculated as

nn
f P

V/2

j v y jP

\-K
V

2 \
.

v
1 + 7

c

2 \
-1/2

(2-36)

where, con is the transverse natural frequency, n is the mode to be calculated, Lj is the

length of the individual span, k = 1 - tj ,
and

c = (2.37)

where, c is the propagation speed of transverse waves relative to the belt.

2.3 TRANSVERSE MOTIONMODEL - FIXED-FIXED SPANS

Transverse motion may occur not only in the spans adjacent to the tensioner, but also in

spans bounded by rigid pulleys. Unlike the tensioner, rigid pulleys rotate about a fixed

axis. Assuming negligible bending stiffness of the belt, the transverse motions of the

fixed-fixed belt spans are linearly decoupled from the rotational motions of the pulleys.
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Figure 2.4 Tensioner motion and angle definition
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However, excitations of the transverse modes may occur due to pulley eccentricities or

irregularities of the accessory torques. As a result, it is important to know the transverse

natural frequencies. Beikmann [13] presented a formula to determine the transverse

natural frequencies of a moving string

nn -c
con=z-^~

(2.38)

where, c} is the mean effective wave velocity for they span and is calculated by:

,

c-V2

Cj
=

(2.39)
cj

In the above equation, c} is calculated differently than in equation (2.37) as follows:

(2.40)

where the tension term P. used here represents the total equilibrium operating tension.

Upon further examination of equations (2.36) and (2.38), it is evident that they are

basically the same with the exception that equation (2.36) accounts for the flexibility of

the tensioner support. By setting rj equal to zero, indicating a rigid support, it can be

shown that equation (2.36) reduces to equation (2.38).

2.4 ALGORITHM FOR DECOUPLED SOLUTION

Presented below in Fig. 2.5 is a flow chart that outlines the procedure presented

previously throughout Chapter 2 that one must follow to solve the decoupled serpentine

belt drive model. Results of the formulation include the operating belt tensions,
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equilibrium phase angles, system natural frequencies and their corresponding mode

shapes.

30



Calculate geometries of the system at the reference state

Length ofbelt spans, contact angles, 9,, etc.

Calculate reference belt tension (at zero belt speed and zero accessory torques)

EQUILIBRIUMANALYSIS (at some specified belt speed and accessory torques)

NO

? Calculate the geometries of the system based on predicted 9,

Calculate tensions (Pj) and phase angles (9j) using equations (2.14)-(2.16)

Calculate the next iteration of 9, using secant method with equation (2.29)

Calculate the parameters of the system based on final 9,

VIBRATION ANALYSIS

Calculate the partial derivatives of the tensions according to equation (2.28)

Build [M], [C], and [K] matrices according to equations (2.25)-(2.27)

Calculate the eigenvalues and eigenvectors of the eigenvalue problem of equation (2.30)

Calculate the transverse vibration natural frequencies from equations (2.36) and (2.37)

Figure 2.5 Algorithm for the decoupled analysis
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CHAPTER 3

COUPLED FORMULATION

This chapter presents a method for determining the natural frequencies and mode shapes

of serpentine belt drive systems where the transverse motions of the belt spans adjacent to

the tensioner are coupled to the rotational motion. The equations ofmotion are presented

and given an extended operator form in order to facilitate discretization of the belt spans

adjacent to the tensioner. An equilibrium analysis is performed to determine the steady

state operating belt tensions and tensioner arm position. Lagrange multipliers are used to

enforce the geometric boundary conditions at the span-tensioner interface. The final

discretized form is used to calculate the dynamic response of the system.

3 . 1 PARTIALLY COUPLED MOTION MODEL

Equilibrium analysis is used to set the operating position of the tensioner arm and the

span tensions due to some steady operating speed and accessory torque loading. For

small belt motions, the linearized model decouples the transverse motion of all belt spans,

except those adjacent to the tensioner, from the rotational motion of the pulleys. The

spans adjacent to the tensioner remain coupled to the rotational motion due the condition

that their boundarymotion depends upon tensioner rotation and translation. This crucial

detail is the motivation behind the extended formulation presented here. The rotational

model in Section 2.1 neglects this coupling and as a result it cannot capture the transverse

motion of the spans.

3.1.1 Equations ofMotion

The model shown in Fig. 3.1 is used to derive the equations ofmotion governing the

response of a serpentine belt drive system to a specified input motion from the

crankshaft. It can be adapted to any system of^-pulleys as the model shown consists of

all the necessary components of a serpentine belt drive system including a single belt,
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Figure 3.1 Serpentine belt drive model
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driving pulley, driven pulleys, and tensioner. The equations ofmotion presented here are

used to calculate the rotational vibration characteristics of the system as well as the

transverse vibrations in the spans adjacent to the tensioner. The following formulation is

based on the work ofParker [22] where the key assumptions preserved herein include:

1 . The belt properties and belt speed are uniform.

2. Belt bending stiffness is negligible.

3. Damping is not modeled.

4. Belt-pulley wedging and belt slip at the belt-pulley interfaces are not

considered.

Assumptions (1), (2), and (4) above are the same as those used in Chapter 2. However,

assumption (3) is not consistent with the model in Chapter 2 as tensioner damping is not

employed here. This discrepancy will be investigated when the solutions are compared in

chapter 4.

The equations ofmotion presented here can be derived using Hamilton's principle as

described in
Beikmann'

s [13] work. The nonlinear equations ofmotion are linearized for

small transverse belt motions about an equilibrium state. Transverse motions of the belt

are described by the term Wj{x,t) which represents the transverse displacement of
they*

span taken positive for deflection toward the interior of the belt loop as shown in Fig. 3.2.

As described in Chapter 2, the crankshaft (pulley 1) is the driving pulley which rotates

clockwise to induce a clockwise motion of the belt. 6} is the phase angle of
they*

pulley

as utilized in Chapter 2. However, the tensioner pulley rotation ( 0, ) is the absolute

rotation, not the rotation relative to the
tensioner arm as in Chapter 2.

The transverse motions of the belt spans adjacent to the tensioner are governed by the

following equation:

d2W, d2W, f 7\d2W:

dr dxdt
w ' dx1
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Crankshaft

(Driving Pulley)
1

Figure 3.2 Tensioner span coordinates
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where i signifies the tensioner pulley. The spans have zero boundary conditions for the

endpoints away from the tensioner

^-.|o=0, Wt\Lj=0 (3.2)

However, at the span-tensioner interface, the transverse displacements of the spans are

dependent upon the rotation of the tensioner arm according to

W,_x\Lii =L,0,cosBx, W,\0 -=L,0,cosB2 (3.3)

The rotational motion of the pulleys and the tensioner arm are governed by the following

equations:

Jfr + KJRJ (Rj0j -

Rj+x0j+y Kj_xRj (i?^,, -

RJ0J ) = Q} J=2,...,n, jyi-l, i, i+\ ;

(3.4)

J,J,.X +Kl_xR,_x{Ri_x0i_x -RA-LA sinA)-^-2^--.(^-2^-2 -RyAy)
= Q,-i> i&

(3-5)

J
,9,

+ K,Rt {R,0, - RM0i+x + L,0, sin /32)-K,_xR, (tfM0M -

R,0t
-

L,0, sin Bx ) = Q,

(3.6)

JJM+Ki+XRM{RM0M -Rl+20M)-K,RM(Ra-RMOM+LA
smfi2)=QM,#n

(3.7)
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J.0.+ + K,_XL,
sin2

px + K,L,
sin2

y92 L,0,-Ki_xL,{Ri_x0i_x-Ri0i)smi3x

dW:
+KtL,{RA -RM0i+1)sm02 +pVL,\^\ cos/?, -^-L cos/?2

dt

dW,

~~dt
(3.8)

+ {p,_x-Pv2Y,
dW,

;-l

<9x

i / \ dW
\L]cos/3x-(P,-pV2)L,^\0cosf32=0

dx

where, J, =Jarm+miL2; m, is the mass of the tensioner pulley, P. is the equilibrium

tension in they span, and Q} are the moments on the accessory pulleys (with steady,

average moments being negative as defined in Chapter 2). The convention 0n+x = 0X is

used.

The equations ofmotion are now cast in dimensionless form with the angular rotations

0j defined in terms of a new coordinate i//y according to

Rj0j=Rx0x-RxW]^Wj=0x-
R.0.

R
(3.9)

where, according to the convention adopted above, y/x
=

y/n+x
= 0 . The rest of the

dimensionless parameters of the system are

, L, . Lj Wj Xj Rx V
;

t

'

V
J

V
J

V
J

A lx ^p~Tp JpjJTp,

EA L^Kj kb LXK,
Pj "t' K '

Px
' kj

"

Px

'
"

//
*' =

L]PX
' J' "

PLXR

J,
_ J JJ

pLxR)

<*j
=

PxRjRxILx
(3.10)

Using the above definitions, the governing equations are cast into dimensionless form as

follows:
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d2Wj d2wj ( 7\d2w,

dt dxjdt
(3.11)

w,-i|o
= 0> w, , .

=0 (3-12)

w
m | /,., = Z< et cosA ,

w,. 1 0 = /,0, cos /J2 (3-13)

hVj+J-^' ~^>)_ 7^(^-1 -Vj)=JA -qj,J=2,...,n jm, i, i+U (3.14)

^-iVVi
+
tMv,-i

-

V, + ',#, sinA
)-
-^-(^,_2

-

^_, ) = J,.,*?, -

q,_x ,
#2 (3.1 5)

*J-1

* k k

J&i
+-fL(v,-

WM
-

1,0, sinA ) -
-^
k_, -

y/, + /,0, sin /J, ) = Jft -

q,
i-\

(3.16)

k k

JmVm +f-(v,+i -VM)-j-(Vi ~WM -Ifi, sin/32)=JM0i ~qM ,
0* (3.17)

i+l ;

J,0,+
k,+^sm2/3x+^sm2

p2 l*0,--jL-l,{v,-Y,-Mnf3x

+ -Tl>(y/M -^,)sin/?2 +v/J JfM, cosA ^-|o cos/5.

/. I dr ' '-'
dt

dw, dw;
+ (p,-, -v'XSH-, ".A -(p, |co.A =0

dx:
1-1

cbc.

(3.18)

Equations (3.1 1)-(3.18) are given an extended operator form to allow the use of classical

methods of analysis. The extended variable a is used to represent the system

displacements
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a = { WM,W,.,y/2,^3,.
..,<//, 0,

v
'^

v
' SrJ

spans pulleys tensioner

(3-19)

Note that, included in the definition of the extended variable a ,
are the continuum

deflections of the two spans adjacent to the tensioner. The above equations can be

written compactly by utilizing the extended operators M ,
G

,
K

,
and K acting on the

extended variable a .

M^-O^-^-f (3.20)

Ma = (w,._, , w, , J2y/2 , i3y/3 ,
. . .

, Jny/n , .7,0, J (3-21)

Ga =
dw dw

2v ^-
,2v

^
, 0,0, . . .

,0,v/,w, 1 0 cos /32
-

vl, w,_x \ , cos /J,
3*m Sx,- ^

^T

(3.22)
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Ka =

-Pi-

Pi

52w.

1

dxU

a2w;

dx?

v'2 V '2

v-i

'* it
A

_*_+ VjtVj*

y

-Vl-2 +
_*_+

-y~M>i-x +

fk k
A

__*. +

</',-. -7*-^ +7K0, sin/?,
N-l 'i-1

fit it

I'M '/

\

/,0,

-^
b- + ZL

^+i-rfw+-rWsillA

/.,

f h. u

it, +^sin2/?, +^sin2/?
I I ,

-V-i +

fit A: ^
_*.+ _

V*

?3
^v

^f#, + A-l *, "T^ I
/( ,

COS fl -/>,/,^ | 0 COS /?2
or, ,

'
cx.

it /t

7^ '
, (V/ "

1-1 )sinA + y- (v,+, -

V, )sin fi2

(3.23)

Aa =
d2w,_x d2w, dw dw,

\

Tir--^r-OA...,o,/,^ ,, ,

cosA -/,f 0 cos/?2 (3-24)

f = (0,0,J20\-q2,JA- <l3>->Jn0i-<ln,Of (3.25)

The inner product between two extended variables v and z
,
as shown by Parker [22], is

defined as:

v, z)
=

I'"'

^z^m + ^y2z2dxi+yiz3+... + yn+2zn+2 (3.26)
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where yr and zr are elements of the extended variables y and z
,
and the overbar

signifies the complex conjugate. With this inner product, the extended operators M , K,

and K are self-adjoint, however G is skew self-adjoint. In addition, M and K are

positive-definite and K is positive semi-definite.

Using a separable solution of the form a ->
ae"0'

,
the resulting eigenvalue problem is:

-

co2

Ma - icoGa + La = 0 (3.27)

where L = K-v2K and here co represents the dimensionless natural frequency. With

the separable solution above, the component equations of the eigenvalue problem are

obtained from equations (3.1 1)-(3.18). The dimensionless natural frequencies obtained

from solution of equation (3.27) are related to the dimensional ones using the relation

.=JA (3.28)

3. 1 .2 Equilibrium Analysis

The following equilibrium analysis, to determine the steady state span tensions and

tensioner arm position, is based on the work ofBeikmann et al. [16]. The first step is to

calculate the initial static tension, P0 ,
and the reference belt length, Lreference . Initial static

tension is calculated using equation (2.19) where, based on the model of Fig. 3.1, Qt

must be assigned a negative value as the tensioner torque acts to generate a clockwise

motion of the tensioner arm about its pivot. The reference belt length is calculated as

follows:

L
reference

~

/ j

\^
reference

j

+ R
jYreference

, ) (3-29)
7=1
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where, Lreference^ is the reference length of they span at zero belt velocity and zero

accessory torques, n is the number ofpulleys, and (/>reference is the reference wrap angle of

the belt on
they*

pulley.

The operating tension is defined here as:

Pj=P0+Pc (3.30)

where, PtJ is the tractive tension in
they*

span, and Pc =
pV2

is the centrifugal tension

component which is uniform throughout the system. Tractive tension is the tension

component that provides the normal contact force of the belt on the pulley that is

necessary drive each accessory. Equilibrium for the pulleys is defined by:

(P7-PX)RX+QX =0

(Px-P2)R2+Q2=0

(P2-P3)Ri+Q3=0 (3.31)

{P6-P7)R7+Q7=0

Equilibrium for the tensioner arm is defined by:

PI6L, sin/J, -P,7L, sm/32+Q, -K,(0, -0O)
= 0 (3.32)

Now that equilibrium for each of the unknowns is defined, the solution of the equations is

computed numerically. This is completed by first making an initial guess for the

operating position of the
tensioner. Based on this guess, the operating belt length is

calculated using:
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operating 2-1 \ operating;
+ ^-jYoperatingj ) (J.Jj)

7=1

where, Loperaljng is the operating length of
they*

span, n is the number ofpulleys, and

$operating. is me operating wrap angle of the belt on
they*

pulley. The difference between

equations (3.29) and (3.33) is the belt deflection from the reference state to the operating

state as calculated by geometry. In order to determine if the guess for 0, is correct; the

difference between Lreference and Loperaljng must now be compared against the deflection

allowed by Hooke's Law.

To apply Hooke's law, the belt tensions must be computed based upon the assumed

tensioner arm position. By rearranging equation (3.32), and noting that Q7 equals zero in

equation (3.31), the tractive tensions in the spans adjacent to the tensioner are calculated

as:

^'^nV'lt (3'34)
L, (sin /J,

-

sin p2 )

Using this result, the tractive tensions of spans 6 and 7 are substituted into equation

(3.30) to find the operating tensions which are then back-substituted into equation (3.31)

to calculate the remainder of the span operating tensions.

As assumed in Chapter 2, the average tension over the contact arc of the pulley is taken

as the average tension between the two spans adjacent to the pulley. Using this

simplification, the elongation due to Hooke's law is calculated as:

"> =^Z grating, fa "

^7 )+ R}<l>
operatingt

(? "

^^ +P )l ^^
&A

7=1
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where, AL is the elongation of the belt. Note that the subscript j.j becomes wheny'=l.

In addition, since the term Kpj is not utilized within this formulation as it is in Chapter 2,

the
y^ [Pj + Pj_x | term is necessary to calculate the average tension over the contact arc

of the pulley.

If the initial guess for 0, is correct, then the following equation should be satisfied:

reference ^operating
~ ^^

\3.-)0)

If equation (3.36) is not satisfied, a new guess for 0, is made and the procedure is

repeated. The solution method consists of adjusting 0, until equation (3.36) is satisfied.

By substituting equations (3.29), (3.33), and (3.35) into equation (3.36), a single

nonlinear algebraic equation, which is dependent upon 0, , is produced. Applying a

standard secant method, the solution can be determined; typically within five iterations.

3.1.3 Discretization of the Belt Spans

A local discretization of solely the spans adjacent to the tensioner is implemented due to

the fact that global discretization of the entire system is not possible for the reasons

explained by Parker [22]. With the local discretization, the deflections of the two spans

adjacent to the tensioner are represented in a series ofbasis functions as

>n-i(-,i)=Zr('k(-i)>

r=1

(3.37)

where, / represents the number of basis functions used, ,._, = x,._, //,_, and =

x, II, .

The non-dimensional basis functions, ar and yr , satisfy the zero boundary conditions
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( ctr (0) = 0 and yr (l) = 0 ) at the bounding points away from the tensioner where M = 0

and ,, = 1 ; shown in Fig. 3.2. The ar and yr are not constrained by any boundary

conditions at the span endpoints in contact with the tensioner arm where ,._, = 1 and

The basis functions are chosen to be orthonormal polynomials since the eigenfunctions of

Sturm-Liouville problems have the general property of being orthogonal to one another.

The model of the vibrating elastic string employed here falls under the Sturm-Liouville

classification; so the basis functions used to represent the mode shapes must be an

orthogonal set of functions as well. As a result, the basis functions are determined by

[arasd<*,_x =8rs
*

(3.38)

[YrYsd^i=5rs

where, Srs represents the Kronecker delta. These functions can be represented in terms

of orthogonal polynomials jum (cf) with [ jur (f)p~s (f)d, = \ as the following
0 1 r =

<*m fc-1 ) = Mm fc-1 VV^7
(3 39)

The first four jum (cf) are provided by Parker [22] and shown in Fig. 3.3

p.2($)
= 445{?-3l4)

(34Q)

/^)
= 15V7(<f3-4/3^+2/5)

^4fe)
=

168(#4
+15/14^2

-5/28^)
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The kinetic and strain energies in dimensionless form are formulated as follows:

k.e. =
K.E.

v
!
r i a V l

t 62
vW'

-L-V-

5r ax
(ixr

v J

= YJk.e.J+k.e.,+k.e.i;plan+k.e.
7=2

span

(3-41)

e-

=

7 2
v= t i^((///+,-(7//)2+-^(^-(i/;,-/,0,sin/?,)

(PXRX/LX) j^-x,,2h

J 2l,_xW' ^ " /!'

+^k+1 -^ -/,*,
+ +l I>i^2 /, 2 ",2 " I dxs

i-l
= s.e.slrelch+s.e.,+s.e.span+s.e

span span

(3-42)

Employing Lagrange's equations permits the use of a minimum number of variables

while eliminating constraint forces from the system [25]. The dynamic response of the

system is determined using Lagrange multipliers to set up the dimensionless Lagrange's

equations

_d_

dt

( dL^

\dusj

dL

du.

= XxAXs +A2A2s,s = \,2,...,2f + n (3-43)

where L = k.e. - s.e. and where \ and
/^

are the dimensionless boundary forces

required to enforce the boundary conditions at the tensioner end of the spans [22]. The

boundary conditions of equation (3.13) are the basis for the holonomic constraints on the

generalized coordinates ar(t), 6f(r),and 0,(r). The transformed boundary conditions

are

<D,
=

wM|,_ -1,0,
cos px = 2>, ('kOHl*, cos/?, =o

r=l

#2 =w,|o-f,0,cos/?2 =^^(rVr(o)-/,0,cos/52
=0

(3-44)

r=l
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In equation (3.43), the AXs and A2s terms are the coefficients of the
*

generalized

coordinate in the constraints O, and 02 ,
respectively. Here, AXs =d<t>xldus and

A2s = 502 1 dus, where the generalized coordinates us are ordered as

ax,...,a/,bx,...,b/,i//2,...,y/n,0l. As a result,

\s = 1,2,..., y,
^25=0 j

As = o 1
/ ,m

* = / + l,/ + 2,...,2/

^^L = 2/ + l,2/ + 2,...,2/ + /7-l (3.45)

^/^^-^cos/i,

^2(2/+)=-/(cos/52

Using Lagrange's equations (3.43), the 2/ equations for the span generalized

coordinates become

v ^^.
,

Pt-i-v2

'-

Sr-r-ZGr*, +^\l_]Kras=^AXr+A2A2r
',-1 5=1 *M *=1

/, s=i h *=i

P'
''""

C
Kr*, = V,(/+,) +A2,42(/+,),r

= 1,2,...,/

lr"d^ ^dd
span

K
0 H^ Hr^

(3.46)

(3-47)

52^,.

where
G^f"

represents the discretized form of the Coriolis acceleration term 2pV-^-

from equation (3.1). Now that the span equations have been discretized, the equations of
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motion can be put into matrix form for solution using standard techniques. The
equations

for the pulley rotations remain as they are in equations (3.14)-(3.17). The
tensioner

equation must adopt two modifications. First, equation (3.37) is substituted for the span

deflections. Second, the right-hand side becomes \
(-

1, cos /?, )+ A2
(-

1, cos /?2 ) . The

resulting matrix equation is

M

0

G 0

0 0

>1
Ul

(3-48)

h =

X =

ax,a2,...,af,bx,b2,...,bf,y/2,i//3,...,y/, 0,

spans
pulleys (3-49)

l/U
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!/*/ 0 0 0

M =

0 I/x/ 0

0 0 diag(Jj)

0

0

0 o 0 0

~(l//,._,)Gi/7a"
0 0

G =

0

0

(l//,.)G*"

0

0

0

0

0

G
<(/-D G'(,)

0 0_

/? i
-T /-l T^ 5/7CTH

I2

'i-\

0 0 0

L.,= 0

P,-v2

If

-wr span

0 0

0 0 |^ pulley y(
P>

K/(M) K/(0 Ktp K

Axx A2X

L,2 =

AX2 A22

A A
_l(n+2f)n2(n+2f)_

r T

f, = jo ,...,O,J20X -q2 ,J30X -q3 >
' JA-q,o r

~2J~

(3.50)

The components of
Gspa"

and
Kspa"

are given in equation (3.47); the rest of the matrix

components are provided in Appendix D.

Multiplying out the matrices of equation (3.48) yields

M1,h-G,ih + L1,h + L,2^ = f, (3-51)

The Lagrange multiplier A can be removed by pre-multiplying the above equation by

CT

. C is such that C7L,2 = 0
,
which demands that the columns of C are a basis for the

null space of \JX2 . The (n + 2/)x (n +2f- 2) matrix C is formulated through singular
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value decomposition. Making the substitution h = Cz in equation (3.51), and pre-

multiplying by
Cr

,
as needed to eliminate X

, yields

M system1- ^
system^+ ^system2 ~ ^ f

i
-

Y

M =CrM C*

system
^ iTill^-

system
*^ V,ll*-'

T prT
r*

This is the final discretized form through which the dynamic response of the system to a

specified input from the crankshaft can be determined. With the separable form

z ->
ze"2"

,
the eigenvalues and eigenvectors can be calculated using the eigenvalue

problem below

(-
v'Msysten,

~

^system + ^system r*

= 0 (3-53)

The system modes h are found from h = Cz ; the span modal deflections are determined

using h and equation (3.37). The non-dimensional natural frequencies are related to the

dimensional ones using equation (3.28).

3 .2 TRANSVERSEMOTION - FIXED-FIXED SPANS

The preceding formulation takes into account the transverse motion of the belt spans

adjacent to the tensioner. As a result, it is not necessary to use an additional method to

calculate the transverse vibration characteristics of those spans. However, as described

previously in this chapter; for small belt motions,
the linearized model decouples the

transverse motion of all belt spans, except those adjacent to the tensioner, from the

rotational motion of the pulleys. This statement is based on the assumption that there is

no bending stiffness in the belt. Therefore, if the transverse natural frequencies of the

spans between fixed pulleys are needed, the same procedure described in section 2.3 must

be used to find the transverse natural frequencies of the fixed-fixed spans.
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3 .3 ALGORITHM FOR COUPLED SOLUTION

Presented below in Fig. 3 .4 is a flow chart that outlines the procedure presented

previously throughout Chapter 3 that one must follow to solve the coupled serpentine belt

drive model. Results of the formulation include the operating belt tensions along with

system natural frequencies and their corresponding mode shapes.
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Calculate geometries of the system at the reference state

Length of belt spans, contact angles, 0t, etc.

Calculate reference belt tension (at zero belt speed and zero accessory torques)

Po
T

EQUILIBRIUM ANALYSIS (at some specified belt speed and accessory torques)

Calculate the geometries of the system based on predicted 9,

Calculate tensions (Pj) using equations (3.34) and (3.31)

NO

Calculate the next iteration of 9, using secant method with equation (3.36)

YES

Calculate the parameters of the system based on final 9,

VIBRATION ANALYSIS

Calculate non-dimensional parameters

Build [Mn], [Gn], [Lul and [L12] matrices according to equation (3.50) and Appendix D

Calculate [M^n,], [G^em]. and [Ls,

Calculate the eigenvalues and eigenvectors from the eigenvalue problem of equation (3.53)

Calculate the transverse vibration natural frequencies from equation (2.38)

Figure 3.4 Algorithm for the coupled analysis
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CHAPTER 4

CASE STUDIES - ANALYTICAL AND EXPERIMENTAL

This chapter presents three case studies that that are used to assess each of the two

methods presented in Chapter 2 and Chapter 3 to accurately describe the equilibrium state

and vibration characteristics of the systems. The first analytical case study is borrowed

from Hwang et al. [7] and the results found here are compared against those published in

the paper. The second analytical case study is borrowed from Parker [22] and the results

found here are compared against those published in the paper. The third case study is

based on experimental work completed by Beikmann et al. [13] and the results found

here are validated by comparison against those published in the paper. A parametric

study is completed to determine the effect of coupling on the accuracy of the results

based on varying engine speed.

4. 1 CASE STUDY 1 - ANALYTICAL

4.1.1 System Configuration

Data for an example serpentine belt drive system is presented in Table 4. 1 . The data is

taken from Hwang et al. [7] who determined the values based on the setup of an actual

engine. Most of the parameters can be calculated based on the geometry of the system.

However, as described by Hwang et al., the parameters K, and C, were determined

experimentally. Note that J7, is included in the value of J, .

4. 1 .2 Decoupled Results

4.1.2.1 Equilibrium

Tractive tension is the steady state tension component that is available to drive each

pulley. The tractive tension is given by
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Table 4.1 Dimensional specifications and load information: case 1

PULLEYS

Pulley #

j
Type Xj -

Yj Location

(mm)
Rj

(mm)
Jj2

(kg-m2)
Qj (Equil. Study)

(N-m)

Qj (Vibs. Study)

(N-m)

1 C/S (0,0) 81.25 0.122

2 A/C (261.5,60) 64.5 0.00415 -24.4 0

3 P/S (252, 234) 70.6 0.00131 -24.4 -24.4

4 IDL (90.3,251.1) 41.15 0.000263 0 0

5 ALT (86, 354) 30 0.00421 -8.13 0

6 W7P (0, 167.5) 67.5 0.00176 -1.36 -1.36

7 TENS. Pulley (151.2, 155.3) 38.1 0.000207 0 0

TENSIONER ARM

X8 - Y8 Location

(mm)

6o

(deg)

J.

(kg-m2)

g

(m/s2)

meff

(kg)

EA

(N)

(142,207.5) 280 0.001424 0 (assumed) 0.458 80064

Leff

(mm)

L,

(mm)

Q.

(N-m)

c,

(N-m-s)

K,

(N-m/rad)

P

(kg/m)

25 53 25.19 2.26 28.25 0.10687
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Pj=P,-pV2

(4.1)

where pV represents the centrifugal belt tension as described previously. Tractive

tensions are plotted in Fig. 4.1 for all seven belt spans over a range of steady belt speeds.

The specified steady accessory torques are Q2 = Q3 = -24.40 , Q4 = Q7 = 0 , Q5 = -8.13
,

an(i Qb -1 -36 (N-m). Note that since Leff and meff are rarely provided in a given set

of data for a system; the solution provided here ignores their effect by equating the

gravitational constant ( g ) to zero. By setting g = 0 , the weight term is eliminated and as

a result, each of the case study dimensional specifications and solutions are further alike.

Since the weight term is small, ignoring it does not affect the results.

From the plot in Fig. 4.1 it can be seen that the tractive tensions are equal for belt spans 3

and 4, and spans 6 and 7. This is due to the fact that no steady-state torque is applied at

the idler and tensioner pulleys. In addition, it is apparent that the tractive tensions are

speed dependent; however, this dependence is not overwhelmingly strong.

The tensioner arm angle at equilibrium is also a function of speed. As mentioned in

Section 2.2, the tensioner will relax as a result ofbelt stretch at increasing speeds.

Relaxation of the tensioner is indicated by an increase in tensioner arm angle (according

to Fig. 2.1) as shown in Fig. 4.2. Notice that extrapolating the graph back to zero engine

speed will not result in a tensioner arm angle that agrees with the reference tensioner arm

angle of 280 degrees. The reason for this inconsistency is the accessory torque loading

that is present when the belt is in motion. Recall that the reference state is defined by

zero belt speed and zero accessory torques.
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Figure 4.1 Steady-state tractive tensions: decoupled analysis, case 1
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Figure 4.2 Equilibrium tensioner arm angle: decoupled analysis, case 1
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4.1.2.2 Naturalfrequencies andmode shapes

The decoupled rotational vibration and transverse vibration of the spans adjacent to the

tensioner, along with the spans bounded by fixed pulleys are now studied. Using the

model described in Table 4.1, with accessory torques Q3 = -24.40 , Q6 = -1 .36 ,

Q2 = Qs, = Qs = Q7 = 0 (N-m), and C, = 0
,
the natural frequencies are plotted as a

function of engine speed (rpm) in Figs. 4.3, 4.4 and 4.5. Note that the effect ofdamping

is removed by setting C, = 0 . This eliminates the discrepancy due to the difference in

the assumptions between Chapter 2 and Chapter 3.

It is apparent from the figure that the natural frequencies of the rotational modes are

essentially independent of engine speed. However, the natural frequencies of the

transverse modes are strongly dependent upon belt speed. This result is expected in the

spans adjacent to the tensioner, since the lengths of the spans increase as engine speed

increases due to the relaxation of the tensioner arm. It can be seen from equation (2.36)

that increasing the belt speed and belt length will result in decreasing natural frequencies.

Similarly for the spans between fixed pulleys, increasing belt speed will decrease the

natural frequency according to equation (2.38).

Natural frequencies and modes of the system are provided in Table 4.2 for the steady

operating speed of477.5 rpm and accessory torque loading described within this section.

The
"Mode"

column describes the dominant type of vibration and the element of the

system that is most affected at the corresponding frequency. Despite the reference to

only one dominant element,
all degrees of freedom for the system experience some

vibration at each natural frequency.
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Table 4.2 Natural frequencies and mode shapes: decoupled analysis, case 1, 477.5 rpm

CALCULATED RESULTS

Natural Frequency

(Hz) Mode

19.1 1st Rotational -

Pulley 5

95.4 2nd Rotational - Pulley 2

109.8 3rd Rotational - Tensioner Arm

129.9 1 st Transverse - Span 7

193.5 4th Rotational - Pulley 7

213.3 1 st Transverse - Span 6

237.3 5th Rotational - Pulley 3

259.7 2nd Transverse - Span 7

426.5 2nd Transverse - Span 6

440.6 6th Rotational - Pulley 7

502.9 7th Rotational - Pulley 4

PUBLISHED RESULTS

Natural Frequency

(Hz) Mode

19.1 1st Rotational - Pulley 5

96.3 2nd Rotational - Pulley 2

103.7 3rd Rotational - Tensioner Arm

186.9 4th Rotational - Pulley 7/Tensioner

236.9 5th Rotational - Pulley 3

436.2 6th Rotational - Pulley 7

502.2 7th Rotational - Pulley 4
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4.1.3 Coupled Results

4.1.3.1 Equilibrium

Using the same configuration and accessory torque loading as in Section 4.1.2.1, tractive

tension is plotted in Fig. 4.6 for the coupled analysis. As in the decoupled analysis, the

tractive tensions remain dependent upon engine speed; however, this dependence is

weak. The tensioner arm angle is plotted against engine speed in Fig 4.7. As with the

tractive tensions, the coupled analysis provides nearly identical results to the decoupled

analysis. This result is expected as the two methods for finding equilibrium are based on

the same principle.

4.1.3.2Naturalfrequencies and mode shapes

Whereas the decoupled analysis requires separate calculation of the transverse vibration

characteristics for the spans adjacent to the tensioner, the coupled analysis accounts for

the motions within the formulation. As a result, when the eigenvalues are calculated

using equation (3.53), the natural frequencies of all modes are described (except the

transverse modes between fixed pulleys). The natural frequencies are plotted below as a

function of engine speed in Figs. 4.8, 4.9, and 4.10.

The natural frequencies and modes of the system are described in Table 4.3 for the same

conditions described in Section 4.1.2.2.

4. 1 .4 Comparison

Upon comparing the results
presented here for the decoupled analysis with those offered

by Hwang et al. [7], it is apparent that Hwang's et al. findings are indeed repeatable.

This is evident in the fact that the trends predicted by Hwang et al. with respect to the

tractive tensions and natural frequencies versus engine speed are matched by the results
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Table 4.3 Natural frequencies and mode shapes: coupled analysis, case 1, 477.5 rpm

Natural Frequency
(Hz) Mode

24 1st Rotational - Pulley 5

111.9 2nd Rotational - Pulley 2

129.3 1st Transverse - Span 7

134.8 3rd Rotational - Tensioner Arm

211.9 1 st Transverse - Span 6

258.7 4th Rotational - Tensioner Arm

267.3 2nd Transverse - Span 7

290.3 5th Rotational - Pulley 3

438.4 2nd Transverse - Span 6

496.6 6th Rotational - Pulley 7

569.5 7th Rotational - Pulley 4
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presented herein. In addition, the natural frequencies generally match to within a few

percent. This result demonstrates that eliminating the weight term of the tensioner arm,

as described previously, does not have a noticeable effect on the results. The

corresponding modes predicted by Hwang et al. are reproduced here.

The results obtained using the decoupled analysis are compared to those of the coupled

analysis by analyzing the values presented in Tables 4.2 and 4.3 along with the graphs in

Figs. 4.3-4.5, and Figs. 4.8-4.10. Upon examining the natural frequencies of the

rotationally dominant modes in Tables 4.2 and 4.3; it is apparent that the coupled and

decoupled solutions produce decidedly different values. Even at the lower modes, the

natural frequencies experience a 15-20% difference between the two methods.

Examining the
4th

rotational mode (where the natural frequencies differ by the greatest

amount), it is predicted by the coupled analysis that the tensioner arm is the dominant

motion. However, the decoupled analysis predicts that pulley 7 experiences the largest

amplitude vibration. Upon further examination it becomes unclear which is truly the

dominantmotion as both pulley 7 and the tensioner arm experience large vibrations.

Recalling that since the
"Modes"

described in Tables 4.2 and 4.3 refer to the degree of

freedom experiencing the largest vibration, it is possible that two elements of the system

may be excited almost equally; which is the case for the
4th

rotational mode described

here. Also, the coupled model captures an additional coupling of the motions among the

tensioner arm, span 6, and pulley 6. This is evident by noticing in Figs. 4.8 and 4.9 that

as the
1st

transverse mode approaches the frequency of the
3rd

rotational mode near 6000

rpm; the
3rd

rotational mode veers suddenly downward. This behavior demonstrates an

interaction is occurring between the elements. This interaction is further exemplified by

the mode shapes which indicate that all three of the elements mentioned previously

experience similar large motions.

Due to the difficulty in comparing the eigenvectors qualitatively, the modal assurance

criterion is introduced as a quantitative means to better assess the consistency between

the two methods. As a measure of the least squares deviation of the points from the
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straight line correlation [26], the modal assurance criterion compares the coupled and

decoupled mode shapes at the rotationally dominant frequencies. Details are provided in

Appendix E. The comparison yields a value between 0 and 1, where a value closer to 1

indicates similar mode shapes and 0 indicates dissimilar results. As applied here to this

analysis, the modal assurance criterion compares only the rotational mode shapes

between the methods. The values are given in Table 4.4, where it is shown that the
3rd

and 4 rotational modes are inconsistent between the two methods. This discrepancy is

remedied when the
3r

rotational mode shape of the coupled solution is compared with

the 4 rotational mode shape of the decoupled model and visa versa. With this

comparison, the modal assurance criterion improves to 0.748 and 0.842 for the
3rd

and
4th

modes respectively. With the convention that the natural frequencies are compared

between modes with similar mode shapes, the coupled rotational natural frequency of the

3r

mode should be related to the decoupled rotational natural frequency of the 4 mode

and visa versa. Using this rule the rotational natural frequencies differ by 50% between

the two methods for the
3rd

and
4th

modes, further differentiating the solution techniques.

Despite the quantitative differences, both decoupled and coupled analyses show the same

trend that indicates the rotational natural frequencies are relatively independent from

engine speed.

Transverse natural frequencies of the spans adjacent to the tensioner are similar between

the two methods. At the lower modes, the results are comparable to within 1 .0%.

However, for the higher modes, the results begin to diverge with increasing engine speed.

At lower speeds, the results remain consistent between the methods. However, at higher

speeds, natural frequencies for the
2nd

modes differ by as much as 30%.

The spans bounded by fixed pulleys have identical transverse natural frequencies when

calculated by both the coupled and decoupled models. This result is expected as these

motions are completely decoupled in both methods
and the technique to determine these

frequencies is the same. The results are provided here for completeness.
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Table 4.4 Modal assurance criterion values: case 1, 477.5 rpm

Rotational Mode Modal Assurance Criterion

First Coupled, First Decoupled 0.834

Second Coupled, Second Decoupled 0.898

Third Coupled, Third Decoupled 0.003

Fourth Coupled, Fourth Decoupled 0.002

Fifth Coupled, Fifth Decoupled 0.923

Sixth Coupled, Sixth Decoupled 0.802

Seventh Coupled, Seventh Decoupled 0.989

Third Coupled, Fourth Decoupled 0.748

Fourth Coupled, Third Decoupled 0.842
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4.2 CASE STUDY 2 - ANALYTICAL

4.2. 1 System Configuration

Data for an example serpentine belt drive system is presented in Table 4.5. The data is

taken from Parker [22] who obtained the values from a system in an automobile that was

experiencing a vibration and noise problem. Parameters 0O and L, were not provided

directly by Parker but instead were calculated from the information given and the system

geometry. In addition, meff and Leff were not given by Parker; however, their effects are

ignored nevertheless by setting g
= 0 as in the previous analysis. Finally, J7, is

included in the value of J
, ,
and C, is not utilized due the assumption that there is no

damping within the system.

4.2.2 Decoupled Results

4.2.2.1 Equilibrium

Tractive tensions are plotted in Fig. 4.1 1 for all seven belt spans. As in case study 1,

tractive tension does not change with increasing engine speed. Equilibrium tensioner arm

angle is plotted in Fig. 4. 12. Again, similar trends are seen here as in case study 1 . In

Fig 4.12, relaxation of the tensioner arm due to increasing engine speed is signified by a

decrease in tensioner arm angle according to Fig. 3.1.

4.2.2.2 Naturalfrequencies andmode shapes

System natural frequencies are plotted in Figs. 4.13-4.15. The rotational natural

frequencies remain constant with increasing engine speed. However, the transverse

natural frequencies of the belt spans adjacent to the tensioner and those between fixed

pulleys are highly dependent upon engine speed as seen in Figs. 4.14 and 4.15. Note that
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Table 4.5 Dimensional specifications and load information: case 2

PULLEYS

Pulley #

j
Type Xj

-

Yj Location

(mm)
Rj

(mm)
Jj

2

(kg-m2)

Qj
(N-m)

1 C/S (0,0) 97 0.122

2 A/C (211.6,9) 62.5 0.003785 -24.82

3 ALT (231.7, 189.8) 29.1 0.0043 -9.09

4 IDL (79.6, 209.7) 40.75 0.00024 0

5 P/S (-202.6, 269.9) 66.85 0.000596 -18.908

6 W/P (-200, 100) 82.45 0.004596 -2.382

7 TENS. Pulley (-45.1, 154.3) 37.75 0.000043 0

TENSIONER ARM

X8 - Y8 Location

(mm)

e0

(deg)

Jt

(kg-m2)

g

(m/s2)

meff

(kg)

EA

(N)

(33, 137) 167.5 0.004601 0 (assumed) 0 (assumed) 111200

Leff

(mm)

L,

(mm)

Q,

(N-m)

c,

(N-m-s) (N-m/rad)

P

(kg/m)

0 (assumed) 80 39.768 0 38.84 0.107
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the
7l

rotational mode is not plotted in Fig. 4.13 for the purpose of showing the behavior

of the other modes more clearly.

For the steady operating speed of 680 rpm, the natural frequencies and mode shapes are

given in Table 4.6.

4.2.3 Coupled Results

Results for the coupled analysis are presented in Figs. 4.16-4.20 and Table 4.7. Similar

results as in Section 4.1.3 are seen. Parker's results are included in Table 4.7 for

comparison.

4.2.4 Comparison

Results presented by Parker [22] are compared to the findings of the coupled analysis

completed herein. Based on this comparison, it is determined that Parker's findings are

indeed repeatable. This is shown by the fact that the equilibrium and vibration analysis

results presented herein match those given by Parker to within a few percent.

As in Section 4.1.4, the results obtained from the decoupled analysis are compared to

those found using the coupled analysis by analyzing the values presented in Tables 4.6

and 4.7 along with the graphs in Figs. 4.13-4.15, and Figs. 4.18-4.20. Upon examining

the natural frequencies of the rotationally dominant modes in Tables 4.6 and 4.7; it is

again apparent that the coupled and decoupled solutions produce distinctly different

values. For all modes, the natural frequencies experience a 15-20% difference between

the two methods. The modal assurance criterion reveals that the
2n

,

3r

, and
4th

rotational mode shapes are inconsistent between the two methods as shown in Table 4.8.

Upon comparing the
2nd

rotational mode shape of the coupled analysis with the
4th

rotational mode shape of the decoupled analysis and visa versa; the modal assurance

criterion improves to 0.586 and 0.401 respectively. Again using the convention that the
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Table 4.6 Natural frequencies and mode shapes: decoupled analysis, case 2, 680 rpm

Natural Frequency

(Hz) Mode

28.4 1st Rotational - Pulley 3

65.0 2nd Rotational - Pulley 7

168.7 3rd Rotational - Pulley 2

205.8 4th Rotational - Pulley 5

209.7 1st Transverse - Span 6

258.5 1st Transverse - Span 7

330.7 5th Rotational - Pulley 4

419.4 2nd Transverse - Span 6

516.9 2nd Transverse - Span 7

500.1 6th Rotational - Pulley 4

1064.4 7th Rotational - Pulley 7
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Table 4.7 Natural frequencies and mode shapes: coupled analysis, case 2, 680 rpm

CALCULATED RESULTS

Natural Frequency

(Hz) Mode

32.8 1st Rotational - Pulley 3

79.4 2nd Rotational - Pulley 6

178.7 3rd Rotational - Pulley 2

209.7 1st Transverse - Span 6

258.5 1st Transverse - Span 7

291.7 4th Rotational - Tensioner Arm

389.9 5th Rotational - Pulley 4

435.5 2nd Transverse - Span 6

536.7 2nd Transverse - Span 7

541.0 6th Rotational - Pulley 5

1355.7 7th Rotational - Pulley 7

PUBLISHED RESULTS

Natural Frequency (Hz) Mode

32.9 1 st Rotational

79.5 2nd Rotational

178.7 3rd Rotational - Pulley 2

210.0 1st Transverse - Span 6

258.9 1st Transverse - Span 7

292.0 4th Rotational

389.9 5th Rotational

420.0 2nd Transverse - Span 6

518.2 2nd Transverse - Span 7

541.0 6th Rotational
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Table 4.8 Modal assurance criterion values: case 2, 680 rpm

RotationalMode

Modal Assurance

Criterion

First Coupled, First Decoupled 0.889

Second Coupled, Second Decoupled 0.309

Third Coupled, Third Decoupled 0.367

Fourth Coupled, Fourth Decoupled 0.036

Fifth Coupled, Fifth Decoupled 0.942

Sixth Coupled, Sixth Decoupled 0.847

Seventh Coupled, Seventh Decoupled 0.997

Second Coupled, Fourth Decoupled 0.586

Fourth Coupled, Second Decoupled 0.401
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natural frequencies are compared between modes with similar mode shapes, the coupled

rotational natural frequency of the
2nd

mode should be related to the decoupled rotational

natural frequency of the
4th

mode and visa versa. Using this rule the rotational natural

frequencies differ by more than 100% for each mode. The inconsistencies are further

supported by the different dominant modes as described in Tables 4.6 and 4.7. Despite

the differences in the values as determined by each of the methods, both show the same

trend that indicates the rotational natural frequencies are relatively independent from

engine speed.

Transverse natural frequencies of the spans adjacent to the tensioner are similar between

the two methods. For the lower modes, the results are again comparable to within 1 .0%.

However, for the higher modes, the frequencies show the same behavior as in case study

1 . At lower engine speeds, the results remain consistent between the methods. However,

at higher engine speeds, natural frequencies for the
2nd

modes differ by as much as 40%.

Those spans bounded by fixed pulleys are once more shown to have the same transverse

natural frequencies when calculated by either the coupled and decoupled models. The

results are again provided for completeness.

4.3 CASE STUDY 3 - EXPERIMENTAL

4.3.1 System Configuration

Evaluating the ability ofboth the coupled and
decoupled solutions to accurately predict

natural frequencies and mode shapes is completed by comparing the results obtained

using each method to
those determined through experiment. Data for an example

serpentine belt drive system is presented in Table 4.9. The data is based on an

experimental setup used by Beikmann [13] to validate the results ofhis coupled

formulation. The experimental results presented in [13] will be used to complete the
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Table 4.9 Dimensional specifications and load information: case 3

PULLEYS

Pulley #

j
Type Xj

-

Yj Location

(mm)
Rj

(mm)
Jj2

(kg-m2)

Qj
(N-m)

1 C/S (552.5, 55.6) 88.9 0.07248

2 TENS. Pulley (347.7,57.15) 45.2 0.000293 0

3 IDL (0,0) 26.97 0.000293 0

TENSIONER ARM

X8 - Y8 Location

(mm)

e0

(deg)

J,

(kg-m2)

g

(m/s2)

meff

(kg)

EA

(N)

(250.8, 63.5) 356.3 0.001165 0 (assumed) 0 (assumed) 170000

Lcff

(mm)

L,

(mm)

Q,

(N-m)

c,

(N-m-s)

K,

(N-m/rad)

P

(kg/m)

0 (assumed) 97 8.34 0 54.37 0.1029

83



comparison between the coupled and decoupled models. The system presented here is

smaller than those in the previous case studies; however it contains all the necessary

components critical to a serpentine belt drive system including a driving pulley,

automatic tensioner, and a driven pulley. The simplicity of the system was necessary to

reduce potential errors in the experiment. The mass of the tensioner pulley is included in

J, using the parallel axis theorem. Additional required parameters are calculated from

the system geometry.

4.3.2 Decoupled Results

4.3.2.1 Equilibrium

Tractive tensions are not plotted here since tension is uniform throughout the entire belt

length due to the condition that there are no accessory torque loads applied to any of the

pulleys. It can be shown, as in the previous case studies, that tractive tension does not

change with increasing engine speed. Equilibrium tensioner arm angle can also be shown

to produce similar trends as in the previous case studies.

4.3.2.2 Naturalfrequencies andmode shapes

The natural frequencies are plotted in Fig. 4.21-4.23. The rotational natural frequencies

remain constant with increasing engine speed. However, the transverse natural

frequencies of the belt spans adjacent to the tensioner and those between fixed pulleys are

highly dependent upon engine speed as seen in Fig. 4.22
and 4.23.

For zero engine speed, the natural frequencies and mode shapes are given in Table 4.10.

Notice the transverse natural frequency of the fixed-fixed span is given. This is included

in Table 4.10 for completeness since Beikmann includes it in the results.
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Table 4.10 Natural frequencies and mode shapes: decoupled analysis, case 3, 0 rpm

Natural Frequency

(Hz) Mode

31.9 Transverse - Fixed-Fixed Span

51.0 1st Transverse - Span 2

55.6 1st Rotational - Pulley 3

101.9 2nd Transverse - Span 2

113.6 1st Transverse - Span 1

214.8 2nd Rotational - Pulley 3

227.1 2nd Transverse - Span 1

508.1 3rd Rotational - Pulley 2
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4.3.3 Coupled Results

Results for the coupled analysis are presented in Figs. 4.24-4.26 and Table 4.1 1. Similar

results are seen here as in the previous sections with the addition of the transverse natural

frequency of the fixed-fixed span.

4.3.4 Comparison

Results presented by Beikmann [13] are compared to the findings ofboth the coupled and

decoupled analyses completed herein. Based on this comparison, it is determined that the

coupled solution provides the most accurate results. This is shown by the fact that the
1st

rotational natural frequency differs from the experimental value by less than 2 percent.

However, the decoupled analysis provides an estimate of the natural frequency that is

more than 10 percent off the experimental value. Both analyses result in the same

transverse natural frequency for span 2 adjacent to the tensioner; which deviates from the

experimental value by less than 2 percent.

Analyzing the highermodes not presented by Beikmann reveals that the natural

frequencies remain more consistent for this small system than for the larger systems of

case studies one and two. Here, the natural frequencies differ by less than 10 percent as

can be seen in Tables 4.10 and 4.11. The modal assurance criterion demonstrates that

only the first mode shape is inconsistent between the two methods as shown in Table

4.12. This result is further reinforced by the experimental findings that demonstrate the

same dominantmotion as the coupled analysis.

Transverse natural frequencies of the spans adjacent to the tensioner are similar between

the two methods. For the lower modes, the results are again comparable to within 1.0%.

However, for the highermodes, the frequencies show the same behavior as in case

studies 1 and 2. At lower engine speeds, the results remain consistent between the

methods.
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Figure 4.24 Rotational mode natural frequencies: coupled analysis, case 3
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Table 4.1 1 Natural frequencies and mode shapes: coupled analysis, case 3, 0 rpm

CALCULATED RESULTS

Natural Frequency

(Hz) Mode

31.9 Transverse - Fixed-Fixed Span

51.0 1 st Transverse - Span 2

61.3 1st Rotational - Tensioner Arm

105.0 2nd Transverse - Span 2

114.0 1 st Transverse - Span 1

214.0 2nd Rotational - Pulley 3

234.8 2nd Transverse - Span 1

560.2 3rd Rotational - Pulley 2

PUBLISHED RESULTS

Natural Frequency

(Hz) Mode

33.00 Fixed-Fixed Transverse

51.75 1 st Transverse - Span 2

62.50 1 st Rotational - Tensioner Arm
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Table 4.12 Modal assurance criterion values: case 3, 0 rpm

Rotational Mode Modal Assurance Criterion

First Coupled, First Decoupled 0.04

Second Coupled, Second Decoupled 0.791

Third Coupled, Third Decoupled 0.939
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However, at higher engine speeds, natural frequencies for the
2nd

modes differ by as

much as 50%.

Those spans bounded by fixed pulleys are once more shown to have the same transverse

natural frequencies when calculated by both the coupled and decoupled models. The

results are again provided for completeness.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

This chapter reviews the thesis objectives and contributions described in Chapter 1. The

results presented in Chapter 4 are summarized and final conclusions about the need to

couple or decouple the model are made. Finally, recommendations for future work in the

area of serpentine belt drives are discussed.

5 . 1 PROBLEM OBJECTIVES

In the field of serpentine belt drives, it has become common for authors to couple the

transverse and rotational motions of the belt due to the motion of the tensioner arm. It

has been assumed that this coupling mechanism will produce more accurate results.

However, as these systems become more complex, the solution of their models require

greater computing power; a condition made worse by more complicated solution

techniques.

The problem objective of this thesis is to determine whether it is necessary to couple the

transverse and rotational motions of the belt due to the motion of the tensioner arm. Two

solution techniques (one coupled and one decoupled) are applied to three case studies to

determine the versatility and accuracy of each technique. A parametric study is used to

determine the ability of each solution to predict system behavior based on varying system

parameters.

5.2 THESIS CONTRIBUTIONS

1 . The formulation presented by Hwang et al. [7] is extended to present the

linearization solution technique necessary for determining the rotational

natural frequencies and mode shapes of the decoupled model. Decoupled
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methods for determining the transverse natural frequencies of the spans

adjacent to the tensioner and those between fixed pulleys are presented.

2. The coupled model presented by Parker [22] is extended to present the entire

technique for determining the steady state tensions and tensioner arm angle

necessary to calculate the natural frequencies and mode shapes of the system.

An decoupled model is used to determine the transverse natural frequencies of

the spans bounded by fixed pulleys.

3. The accuracy of each method is examined using three case studies. Both

solution techniques are applied to each case study and the natural frequency

and mode shape results are compared to determine the necessity of coupling

the motions.

4. The ability of each method to accurately predict changes in natural

frequencies due to varying system parameters is examined through a

parametric study.

5.3 PARAMETRIC STUDY

The figures referenced in Chapter 4 are plotted across a specific range of engine speed.

Upon referring to those figures, it is apparent that certain characteristics of the system are

affected largely by speed. The range over which the figures are plotted is chosen since it

represents a normal operating range of an automotive engine.

The rotational natural frequencies are relatively unaffected by an increase in engine speed

up to the 6000 rpm limit. However, the transverse natural frequencies are greatly

influenced by increasing speed as evidenced by the figures. Transverse natural

frequencies of the spans bounded by fixed pulleys change at the same rate for both the

coupled and decoupled models since both are calculated using the same procedure. The

transverse natural frequencies of the spans adjacent to the tensioner show different

behavior between the two methods. At lower engine speeds, the natural frequencies of all

the transverse modes are found to be closely related between the two methods to within

10 percent. However, as engine speed begins to increase, the methods produce distinctly
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different results. This occurs particularly for the
2nd

transverse modes. For case study 1,

the natural frequencies of the
2n

transverse modes differ by 30% at 6000 rpm. Similar

results are seen for case study 2 and case study 3, where the frequencies differ by 40%

and 50% respectively.

5.4 CONCLUSIONS

The decoupled solution has the advantage of simplicity over the coupled solution. When

the transverse motions of the belt spans adjacent to the tensioner are ignored, the process

to determine the natural frequencies and mode shapes of a serpentine belt drive system is

straightforward and readily programmable in any coding language.

Despite the simplicity of the decoupled solution, the results show that rotational motion is

indeed coupled to the transverse motions of the spans adjacent to the tensioner. The

decoupled analysis cannot predict the rotational natural frequencies with the accuracy of

the coupled analysis. The variation between the results is consistently in the 15-25%

range. The coupled solution is shown to produce the more accurate results based on the

comparison to the experimental data.

As the number of pulleys and therefore the size of the system decrease, the variation in

results between the solution techniques diminishes. As is shown by case study 3, the

difference between the coupled and decoupled rotational natural frequencies is

consistently less than 10%. This small error in the results is deemed acceptable as

experimental results are only reliable to within 10% due to the difficulty in measuring

characteristics of the system.

The coupled and decoupled solutions provide similar results for the transverse natural

frequencies. The spans bounded by fixed pulleys require the same method for each

model to determine the transverse natural frequencies. It follows then that both produce

the same accurate results validated by the experimental data.
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The spans adjacent to the tensioner are not as straightforward. For the lower modes, the

results are consistent between the two methods for the entire range ofbelt speeds.

However, the second modes begin to see increased deviation between the two solutions.

For lower engine speeds a difference of 10% is acceptable; however at higher speeds, the

difference grows to over 30%. This behavior is observed for both large and small

systems.

From these results, it is evident that the rotational and transverse motions must be

coupled to accurately predict the natural frequencies and mode shapes of a serpentine belt

drive system.

5.5 RECOMMENDATIONS FOR FUTURE WORK

The analysis completed in this thesis has led to observations for future work in the field

of serpentine belt drive modeling.

In the coupled analysis, a set of four basis functions were used to represent the shape of

the span adjacent to the tensioner. Increasing the number ofbasis functions is shown by

Parker [22] to result in faster convergence of the natural frequencies. However, it is

unclear the effect that the shape of the basis function has on the results. To examine this,

a new set ofbasis functions should be used to determine how the natural frequencies and

modes shapes are affected.

The results presented in this thesis are validated by the experimental data provided by

Beikmann [13]. However, the amount of data available is limited as only the first few

modes are presented in the experimental results. Therefore, more experimental work

needs to be done to detect the true behavior of serpentine belt drive systems in order to

better understand how each assumption limits the accuracy of a formulation.
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APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION FOR THE TENSIONER

SUBSYSTEM

A model of the tensioner subsystem is shown in Fig. 2.2. This configuration is used to

derive the equations ofmotion that describe the rotational response of the tensioner

assembly. Consider a control volume enclosing the tensioner arm and pulley 7 which

rotates rigidly with the tensioner arm about the pivot [7]. The governing equation for a

noninertial control volume rotating about a fixed axis is [27],

'* F, + [/xgpd^ + Pshaf,
- ^yrx[2aJxVxyz+cox(&xF) + a>x7]pdV:

d
= t rxVxvzPpd+ f rxVxvzPbVxvz4dA

~st kv wrp ts
xyz^b xyz

(Al)

where,
V- is the volume, pp is the pulley density, and pb is the density of the belt. In

this equation, the r and V vectors represent position and velocity measured relative to

the control volume, and a> represents the angular velocity of the entire control volume.

Surface forces ( Fs ) include the force ofboth spans on the surface of the control volume

and fshafl is the toque at the tensioner hub due to tensioner arm damping and the torque

applied by the tensioner spring. Each term in equation (A.l) is evaluated for this

particular system

rxFs= [P6 (R7 + L, sin J3X )
-

P7 (R7 + L, sin J32 )]k

[/* gpd =

-meffLeffgcos0,k

I"

rx[2Sxf +GJx(3xr) +
axr]pdrx

= (Jl +Jll)0,k
tv y
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f rxVxvzpd = J797k
r)t tv wrp 1 7

dt

[/xVxyzPbVx^-dA = p(V + R79\)(V + R79\)Lt(smPx-smP2)k

Substitution of these terms into equation (A.l) and rearranging terms yields the equation

ofmotion for the tensioner subsystem as presented in equation (2.9). Equation (2.8) for

pulley 7 can be prepared in the same manner by constructing a control volume around

pulley 7 exclusively and repeating the formulation above.
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APPENDIX B

CALCULATION OF TENSIONER AFFECTED GEOMETRIES

Figure 2.3 Tensioner assembly angles

By examining Fig. 2.3 it is apparent that the span lengths L6 and L7 as well as the

orientation angles /3X and /32 are calculated as functions of the tensioner arm angle (9,).

It is important to know these relationships as solution of the equations ofmotion of the

entire system depend upon these parameters. The system geometries are related through

X7 = Xs+ L, cos9,

Y7 = 78+Z, sin 9,
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L6 = V(X6 +(Y6

L7 =A!(X7 +(Y7 -(R7

+RX)2

x =

tan"*6+*7
+
tan"

Y -Y

X6 -X7

,. 3n

<?i
=

-tan

'r7+rx~

-

tan"1 X7 -Xx

Y -Y
_

7 1i

A=#,-C,

P2-0,-
^2
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APPENDIX C

MASS, DAMPING AND STIFFNESS MATRICES FOR THE LINEARIZED

EQUATIONS OF MOTION

WV

[C] =

~J, + J7, 0 0
Jl\

0 J2 0 ... o

0 0 J3
... o

J7 0 0 -

J7_

~C, 0 0 L, sin /3xpR7 -L, sin P2pR7

0 0 0 0

0 0 0 0

0 0 0 0

[K] =

K K K

R-

R,

Ri

dP^
d0,

El
d0,

dP, , dP-,
d0,le

d0,

dP7 , dP6

d0,
|e

d0,

R-

R-.

Ri

df\

d0,

El
d0,

dP, , dP,

80, aa

dP7 , dP6

d0, d0
2

R.

R,

R,

dP2

~d03
dP

El
d03

dP
d0'e

d0,

dP7 , dP6

d0, d0,

K

R-

R,

R-

dP
_dPL

d07U

d07

dP dP,
d07]e

d07

El\ _El
807U

d07

Kxx = K, + R7 __\
-El

d9/e

80,

-

L, sin /J,
El
80,

+ L, sin /32
8P7

~80<
-meffLeffS^0t

KX2 = Rj
a/i,

_8PjL

80 807
L, sin /?,

El
569,

+ L, sin /32
El
S6>
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KX3 = R7 El\ _El\
803U 803le

-

L, sin (3X
El
80,

+ L, sin/J2
El
80,

KX7=R7 El\ _El80,U

80,

-

L, sin /Jj
El
80,

+ L, sin /32
El
807
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APPENDIX D

ELEMENTS OF MATRICES IN EQUATION (3.50)

Gl(-1)=l,cos/3x[ax(\),a2(\),...,af(l)]

G'"=-l,cos/32[yx(0),y2(0),...,yf(0)]

K'(M)
=

'A'

v'/-iy

(Pi_x-v2)cosj3x[ax(\),a2(l),...,a'(\)]

K'("
= - (pi-v2)cos/31[yx(0),y2(0),...,yf(0)]

it ;2K"

= I. k, +-^sin2/JI+^sin2/32
V ^1-1 h

K'p(U-2) = l,

'
k

A

v''-i y

sin /J,

K*(l, /-!) = -/,
v'/-iy

sin/?, + s'm/32

Klp(l,i) = l,
V
Ou

sin/J2

All other elements in
K'p

are zero and
Kpl

=
transpose\Klp ).
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Kpu"ey(m,m~l)=~^L

Kpu,ley(m,m)=J^L+
k>>

lm 'm+1

Kpu"ey(m,m + \) =^-

'm+l

where m = 1,2, 1 . All other elements in are zero.
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APPENDIX E

MODAL ASSURANCE CRITERION

As a technique for quantifying the comparison between similar mode shapes of different

origin (either predicted or experimental), the modal assurance criterion (MAC) provides a

measure of the least squares deviation of the points from the straight line correlation [26].

This is determined by:

MAC = MM
MfW.xW^L

where {</>} is the mode shape. The subscripts 1 and 2 signify mode shapes determined by

either method 1 or method 2 respectively. The MAC will be a scalar quantity whether or

not the mode shapes are complex, and the degree of correlation is signified by a value

between 0 and 1 . A value closer to 1 indicates similar mode shape while a value closer to

0 indicates dissimilar mode shapes. There is no strict value whichMAC should take in

order to guarantee good results, but it is generally accepted that a value above 0.9

indicates correlated modes, and a value below 0.05 signifies uncorrelated modes.
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